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Protein–protein interactions (PPIs) are fundamental to a variety of biological processes, but targeting 
them with small molecules is challenging because of their large and complex interaction interfaces. 
However, peptides have emerged as highly promising modulators of PPIs, because they can bind to 
protein surfaces with high affinity and specificity. Nonetheless, computational peptide design remains 
difficult, hindered by the intrinsic flexibility of peptides and the substantial computational resources 
required. Recent advances in artificial intelligence (AI) are paving new paths for peptide-based drug 
design. In this review, we explore the advanced deep generative models for designing target-specific 
peptide binders, highlight key challenges, and offer insights into the future direction of this rapidly 
evolving field. 

Keywords: peptide design; artificial intelligence; protein-peptide interactions; deep generative models; protein–protein 
interactions 
Introduction 
PPIs have a pivotal role in biological processes, such as signal 
transduction, cellular metabolism, and molecular transport, mak-
ing them potential targets for drug discovery.(p1),(p2) However, the 
large and shallow nature of PPI interfaces poses significant chal-
lenges to designing small molecules that target PPIs with high 
binding affinity and specificity. Although antibodies effectively 
recognize these interfaces, their poor membrane permeability 
limits their applications against intracellular targets. By contrast, 
peptides offer a balance between molecular flexibility and rigid-
ity, allowing them to bind PPIs with high affinity and specificity. 
Their small size, coupled with favorable properties, such as ease of 
synthesis, low toxicity, and minimal immunogenicity, further 
enhance their clinical potential. For example, glucagon-like pep-
tide 1 (GLP-1) analogs have been successfully used to regulate 
metabolism in diabetes treatment.(p3) These advantages position 
peptide therapeutics as promising candidates for previously ‘un-
⇑ Corresponding authors. Yao, X. (xjyao@mpu.edu.mo), Hou, T. (tingjunhou@zju.edu.cn). 
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The development of peptide therapeutics traces back almost a 
century to the isolation of insulin (Figure 1a).(p4) However, early 
efforts were impeded by the complexities of synthesis and purifi-
cation.(p5) Significant breakthroughs occurred during the 1960s 
with the introduction of solid-phase peptide synthesis (SPPS)(p6) 

and during the 1980s with the advent of recombinant technolo-
gies.(p7) These advancements revolutionized peptide production, 
greatly accelerating research and commercialization efforts.(p8) 

Currently, more than 100 peptide-based drugs have been 
approved by the US Food and Drug Administration (FDA), with 
many more in development, targeting a range of applications, 
including immunosuppression, antimicrobial and antiviral ther-
apies, and cancer treatment.(p9)

druggable’ targets, providing a more effective and biologically 
natural path for future drug development. 

Despite these advancements, peptide drug development has 
largely relied on natural products or their derivatives, with de
aining, and similar technologies. 
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FIGURE 1 
Structural diversity and therapeutic applications of peptides targeting protein–protein interactions (PPI). (a) Diverse structures of insulin and various natural 
peptides. Crosslinks are represented by sticks, with magenta highlighting non-canonical amino acids (NCAAs) and green marking D-amino acids; spheres 
indicate the positions of side-chain Cb atoms and dashed lines denote hydrogen bonds. (b) A bioactive helical peptide (glucagon) bound to a protein 
designed by RFdiffusion,(p12),(p13) with hydrogen bonds highlighted. (c) The backbone atoms and side-chain atoms for each residue. Abbreviation: PDB, 
Protein Data Bank. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
novo peptide design posing a considerable challenge. A major 
bottleneck stems from the structural characterization of peptides, 
because their intrinsic flexibility enables them to adopt various 
conformations, complicating accurate modeling and prediction. 
Moreover, the scarcity of structural data on protein–peptide com-
plexes, coupled with the incorporation of non-canonical amino 
acids (NCAAs) and unconventional cyclic structures, further 
complicates the design process (Figure 1a). Traditional computa-
tional approaches, such as molecular docking and molecular 
dynamics (MD) simulations, are often constrained by their high 
computational costs, limiting their applicability across a range of 
design scenarios.(p10),(p11) . 
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AI, particularly deep learning (DL), has emerged as a transfor-
mative tool in peptide design, and can process intricate structural 
data and capture nonlinear patterns with exceptional precision. 
We start this review with an overview of key data sets related to 
protein–peptide interactions (PpIs), emphasizing advances in pre-
dicting these interactions and modeling protein-peptide complex 
structures. Next, we summarize methods for target-specific pep-
tide design, demonstrating their practical applications through 
illustrative case studies that highlight their importance in drug 
discovery. We also provide a comprehensive overview of recent 
advances in deep generative models for peptide design. Finally, 
we discuss the current challenges faced by AI in this field and
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conclude by outlining future directions, offering insights and 
direction for advancing next-generation peptide therapeutics. 

Protein–peptide interactions 
It has been estimated that 15–40% of all PPIs within cells are 
mediated by PpIs,(p14) and a comprehensive understanding of 
PpIs is essential for advancing peptide-based therapeutics. Here, 
we provide an overview of key data sets related to PpIs, predic-
tion methods for PpIs, and structural modeling approaches for 
protein–peptide complexes. These advances establish a funda-
mental structural framework for data-driven and AI-powered 
peptide design, empowering researchers to develop target-
specific peptides more effectively. 

Protein–peptide interaction databases 
Structural information about PpIs is essential for understanding 
the properties and functional mechanisms of peptides. PpI 
databases can be classified into three main types based on their 
construction purpose: (i) large-scale general data sets; 
TABLE 1 

Protein–peptide interaction databases 

Name Type Description and features Length

CPSet 2 Protein-cyclic peptide complex 
data set sourced from PDB 

5–20 residu

ProPedia 2 Comprehensive data set of 
experimental protein–peptide 
complexes, for peptides ranging 
from 2 to 50 residues 

2–50 residu

Curated structural database of 
biological peptide-mediated 
interactions 

PepBDB 2 <50 residue

PepSite 2 Recently determined, refined X-
ray structures 

3–20 residu

PepX 2 Peptide <10 residues from PDB, 
divided into 505 unique protein-
peptide interface clusters. 

5–35 residu

PepPC-F/PepPC 3 Buried interfacial peptide 
fragments with their 
corresponding binding proteins; 
total of 232 helical peptides and 
3600 nonhelical peptides 

8–30 residu

PpI[S/A]BM 3 Similar data set to PpI[S/A]DS with 
different scope of Kd and pKd. 

4–28 residu

PPI-Affinity 3 Binding affinity data expressed 
as dissociation (Kd) or inhibition 
(Ki) constants 

3–29 residu

SPRINT-Str 3 Protein–peptide complexes 
filtered for peptides with <0 
residues, clustered by 30% 
sequence identity 

<30 residue

PixelDB 3 Nonredundant, high-resolution 
structures of protein–peptide 
complexes, filtered to minimize 
impact of crystal packing on 
peptide conformation 

5–50 residu

PepBind 3 Collection of protein–peptide 
complex data from PDB, 
featuring structural, sequence, 
and experimental information for 
peptides <35 residues 

35 residu
(ii) peptide-specific data sets that include benchmarks; and (iii) 
customized data sets originating from research studies. Table 1 
provides examples of type (ii) and (iii) data sets with >300 entries. 

In recent years, DL has gained significant traction in peptide 
science, empowering tasks such as peptide identification, prop-
erty prediction, and peptide generation,(p15) fueled by the 
expanding structural data sourced from repositories, including 
the Protein Data Bank (PDB).(p16) However, the scarcity of high-
quality structural data poses a significant challenge to training 
large-scale models, thereby hindering advances in peptide-
based predictions. Unlike proteins, peptides exhibit high 
conformational flexibility, which complicates their structural 
characterization. Most protein–peptide complexes in Table 1 
are sourced from PDB, often with significant redundancy and 
predominantly short peptides, which limits structural diversity 
and conformational space coverage. In addition, some databases 
are outdated, with inaccessible websites, with only a few being 
actively updated alongside PDB. Overall, the availability of 
high-quality structural data for peptide complexes remains
Size Year Web server Refs 

es 493 2024 https://github.com/ 
huifengzhao/CPSet 

(p23) 

es 19 813 2021 https://bioinfo.dcc.ufmg. 
br/propedia 

(p24) 

s 13 299 2018 https://huanglab.phys. 
hust.edu.cn/pepbdb 

(p25) 

es 405 2012 https://pepsite2. 
russelllab.org (updated 
on 2021) 

(p26),(p27) 

es 1431 2009 https://pepx.switchlab. 
org (unavailable) 

(p28) 

https://github.com/ 
YuzheWangPKU/ 
DiffPepBuilder 

es 14 897/3832 2024 (p29) 

es 356 2024 – (p30) 

https://protdcal.zmb.uni-
due.de/PPIAffinity 
(unavailable) 

es 1149 2022 (p31) 

https://sparks-lab.org/ 
server/SPRINT-Str 
(unavailable) 

s 1241 2018 (p32) 

es 1966 2017 https://github.com/ 
KeatingLab/PixelDB 

(p33) 

es 3100 2013 https://pepbind.bicpu. 
edu.in (unavailable) 

(p34) 
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limited compared with small molecules, posing challenges for 
data-driven research. Importantly, studies have indicated that 
protein loop regions share structural and dynamic similarities 
with peptides, making these regions a valuable resource for con-
formational analysis and benchmarking peptide-modeling 
methods.(p17) 

In protein structure prediction, researchers use alternative 
sequence data, such as the 300 million sequences in 
UniProt,(p18) to overcome the limitations of structural data sets. 
To enhance prediction accuracy, AlphaFold2(p19) (AF2) leverages 
multiple sequence alignments (MSAs) and ESMFold(p20) captures 
coevolutionary signals, highlighting the importance of integrat-
ing both sequence and structural information. Another effective 
solution lies in the use of virtual structural data sets. High-
precision structure prediction models can rapidly generate 
large-scale structural data, facilitating the creation of extensive 
databases, such as the AlphaFold Protein Structure Database(p21) 

(AFDB). Furthermore, these databases support rapid screening 
and the customization of task-specific data sets. Incorporating 
virtual structures has been demonstrated to significantly improve 
model performance, marking a crucial advance in structural pre-
diction and drug design.(p22) However, future efforts should focus 
on improving the success rate of peptide design using expansive 
external databases to maximize their utility and impact. 

Protein–peptide interaction prediction 
Accurate prediction of PpIs can guide peptide optimization 
through effective amino acid substitutions and backbone modifi-
cations. Researchers have developed various computational 
methods to identify peptide-binding residues on protein sur-
faces. One example is PepBind,(p35) which operates on the pre-
mise that protein-binding residues are static and independent 
of the peptide involved. Nonetheless, different peptides can 
interact with the same protein through different binding modes, 
leading to diverse residue interactions, which limits the applica-
bility of PepBind in complex biological systems. 

For accurate and efficient prediction of PpIs, it is necessary to 
integrate both sequence and structural data. InterPep,(p36) a 
structure-based model, applies random forest algorithm and hier-
archical clustering to predict the most likely peptide-binding 
sites on proteins. However, its dependency on 3D structural data 
and peptide sequences restricts its applicability to proteins with 
resolved structures. 

To overcome these limitations, Lei et al.(p37) introduced 
CAMP, a DL framework that can simultaneously predicts PpIs 
and identifies key binding residues within peptides. By combin-
ing convolutional neural networks (CNNs) with self-attention 
mechanisms, CAMP efficiently extracts both local and global fea-
tures, enabling it to not only predict PpIs, but also identify criti-
cal binding sites. 

Similarly, Abdin et al.(p38) proposed PepNN, a parallel predic-
tion model that integrates sequence and structural data. PepNN 
takes protein structures and peptide sequences as inputs and gen-
erates residue-level scores to evaluate the probability of peptide 
binding. The model features two unique architectures: PepNN-
Struct, which captures structural context using graph attention 
layers, and PepNN-Seq, which focuses on sequence-based 
predictions. 
4 www.drugdiscoverytoday.com
Despite the extensive exploration of machine learning (ML) 
and DL for predicting PpIs, the Molecular Surface Interaction 
Fingerprinting (MaSIF) framework(p39) represents a transforma-
tive, generalized approach that bridges the understanding of PPIs 
and broader protein–ligand interactions. By harnessing geomet-
ric DL, MaSIF directly deciphers interaction fingerprints from 
protein molecular surfaces, revealing complex patterns with 
ligands, peptides, and other proteins. Together, these develop-
ments are providing deeper insights into PpIs and offering more 
accurate and efficient tools for peptide-based drug design. 

Protein–peptide complex structure prediction 
Accurate prediction of protein–peptide complex structures is 
valuable for effective peptide design. As a primary tool in this 
endeavor, molecular docking can predict peptide binding modes 
by optimizing molecular conformations, orientations, and posi-
tions on the potential energy surface. Protein–peptide docking 
methods are broadly categorized into template-based and 
template-free approaches. Template-based docking uses known 
complex structures for predictions and performs well in specific 
tasks, but its applicability is limited by the availability and diver-
sity of templates. By contrast, template-free docking does not 
require prior structural information, making it more versatile 
for a broader range of targets, including those without resolved 
structures. As a result, template-free docking has become a major 
research focus. Within this category, methods are further divided 
into local docking (e.g., DynaDock(p40) and Rosetta 
FlexPepDock(p41) ) and global docking (e.g., PIPER-
FlexPepDock(p42) and HPEPDOCK(p43) ). Furthermore, tools such 
as AutoDock CrankPep(p44) (ADCP) support flexible cyclic pep-
tide modeling, thereby offering new possibilities for the develop-
ment of peptide-based therapeutics. 

Despite these advances, modeling and scoring protein–pep-
tide complexes remain challenging. Unlike small molecules, pep-
tides exhibit high conformational flexibility and can adopt 
various structures that adapt dynamically to their chemical envi-
ronments. It is possible that peptides are disordered when 
unbound but stabilize into specific conformations upon interact-
ing with proteins. In addition, peptide-target binding commonly 
relies on water-mediated hydrogen bonds, and modeling interfa-
cial water molecules adds another layer of complexity to this 
challenge.(p45) 

Extensive studies indicate that existing docking methods 
often struggle to accurately capture the native conformations 
of peptides,(p23),(p53) constrained by their intrinsic flexibility 
and the limitations of scoring algorithms.(p54) Nevertheless, MD 
simulations offer invaluable insights into the thermodynamics, 
kinetics, and mechanistic details of protein–peptide binding 
and dissociation. However, the reliability of these simulations 
depends on the accuracy of the physical models used and the 
effectiveness of sampling energy landscapes. Unfortunately, 
achieving exhaustive sampling remains computationally infeasi-
ble with existing resources.(p11) 

DL provides advanced solutions that transcend traditional 
limitations by directly learning scoring criteria from data, elimi-
nating the requirement for explicit conformational enumera-
tion. Table 2 presents common tools for biomolecular structure 
prediction, highlighting representative AI-driven methods cap-
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Open 
source 

Name Description and features Year Web server Refs 

AF3/AFM Cutting-edge AI model by DeepMind that predicts protein structures 
with near-experimental accuracy, using diffusion-based architecture to 
model complex biomolecular systems, including proteins, nucleic acids, 
small molecules, and ions 

2024 Inference https:// 
github.com/google-
deepmind/alphafold3 

(p46) 

RFAA/RoseTTAFold Biomolecular structure prediction neural network that can predict broad 
range of biomolecular assemblies, including proteins, nucleic acids, 
small molecules, covalent modifications, and metals 

2024 Inference https://github.com/baker-
laboratory/RoseTTAFold-
All-Atom 

(p47) 

Chai-1 Multi-modal foundation model for molecular structure prediction that 
performs at state-of-the-art across variety of benchmarks; enables 
unified prediction of proteins, small molecules, DNA, RNA, 
glycosylations, and more 

2024 Inference https://github.com/ 
chaidiscovery/chai-lab 

(p48) 

HelixFold3 Replicates capabilities of AF3 in biomolecular structure prediction, 
achieving accuracy on par with AF3 for predicting structures of proteins, 
nucleic acids, and conventional ligands 

2024 Inference https://github.com/ 
PaddlePaddle/PaddleHelix 

(p49) 

Protenix Trainable PyTorch reproduction of AF3 2024 Trainable https://github.com/ 
bytedance/Protenix 

(p50) 

Boltz-1 SOTA open-source model to predict biomolecular structures containing 
combinations of proteins, RNA, DNA, and other molecules; also supports 
modified residues, covalent ligands, and glycans, as well as conditioning 
prediction on specified interaction pockets or contacts 

2024 Trainable https://github.com/ 
jwohlwend/boltz 

(p51) 

Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of 
AF2 

OpenFold 2024 Trainable https://github.com/ 
aqlaboratory/openfold 

(p52) 
able of predicting protein-peptide complex structures. For exam-
ple, AF captures structural physics from coevolutionary signals 
using MSA features, enabling the prediction of atomic-level 3D 
structures. This approach is effective for modeling peptides up 
to 40 amino acids with well-defined secondary structures and 
limited flexibility,(p55) and also supports the prediction of pro-
tein–peptide complex structures.(p56) Using accurate prediction 
of protein–peptide complex structures, Mondal et al.(p57) intro-
duced an AF Competition Binding Assay(p58) pipeline to identify 
the most likely binding polypeptides from peptide libraries, aid-
ing the study of PPIs, epitope identification, and design of high-
affinity binding epitopes. 

The recently developed AF3(p46) and RFAA(p47) support all-
atom modeling, enabling precise structure prediction for pro-
tein–ligand complexes, including peptides. These advances not 
only enhance prediction accuracy and stability, but also intro-
duce innovative strategies for peptide design. However, compre-
hensive benchmarks on peptide-related structures remain 
limited. To address this, it is essential to resolve data-quality 
and cleaning issues, incorporate cutting-edge models, and to 
develop tailored approaches specifically for short peptides (5– 
30 residues), which are often overlooked by conventional MSA-
based methods. 

MSA is crucial for protein structure prediction, but its applica-
tion in protein–peptide structure prediction is limited because of 
the shorter length and lesser evolutionary conservation of pep-
tides compared with proteins. AF3 shows potential in modeling 
non-canonical modifications, such as modified peptides and 
macrocycles, through its support for user-defined Chemical 
Component Dictionaries (CCDs). However, the success rate for 
these structures remains uncertain, necessitating further research 
to assess its capabilities, especially in predicting protein–peptide 
complexes. To enhance the performance of AF3 in this area, sys-
tematic studies are essential, along with improvements in pre-
processing tools, docking functions, structure accuracy 
measures, and data sets. 

Despite the scarcity of literature on AF3-based peptide model-
ing, initial studies highlight its potential in protein–peptide com-
plex prediction. For example, Manshour et al.(p59) evaluated AFM, 
ColabFold (CF), and AF3 using a benchmark data set of 60 pro-
tein–peptide complexes. AF3 generated high-quality structures 
with fewer models compared with AFM, which relied on a larger 
model pool. However, the performance of AF3 was limited by its 
small model pool, accessible solely via a web server, emphasizing 
the trade-off between model pool size and computational 
resources in protein–peptide complex prediction. 

As DL tools evolve and data sets expand, future evaluation 
pipelines are expected to improve, especially for nonstandard 
and macrocyclic peptides. Although AF3 shows considerable pro-
mise in PpI modeling, its application to modified peptides and 
macrocycles requires further validation. With advances in evalu-
ation methods and technologies, the role of AF3 in peptide-based 
drug design is expected to expand significantly. 

Target-specific peptide drug design 
Despite progress in rational peptide design and combinatorial 
chemistry,(p60),(p61) existing methods continue to struggle with 
achieving a balance between efficiency and accuracy. A key 
obstacle is that many functional peptides exist in disordered 
states or can freely transition between multiple conformations, 
complicating the design process. Designing peptide binders for 
protein targets is challenging because of the need to accurately
www.drugdiscoverytoday.com 5
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predict their optimal bound conformations. Moreover, the lack 
of secondary structures, typically found in proteins, introduces 
additional constraints to peptide design. 

ML-based approaches have significantly advanced the field of 
de novo protein design, with diffusion-based generative methods 
becoming increasingly central to modern design pipelines(p62) 

(Figure 2a). The boundary between peptide design models and 
protein design has become blurred, because many models now 
extensively use methodologies originally devised for proteins. 
For the sake of consistency and clarity, the well-established clas-
sification framework from protein design was adopted.(p63) For a 
foundational understanding, readers may refer to recent litera-
ture on diffusion models in structural biology.(p64) Here, we focus 
on two widely used strategies in de novo peptide binder design: 
hallucination-based methods and structure–sequence co-design 
methods (Figure 2b). 

Hallucination-based methods 
Various hallucination methods for protein design have been 
developed, all aimed at generating novel sequences that fold into 
stable, unseen structures. These methods optimize random 
sequences using structure prediction algorithms, such as AF 
and iterative techniques, including Markov chain Monte Carlo 
(MCMC), guided by folding-aware loss functions(p65),(p66) (Fig-
ure 2b). A well-established framework for designing peptides tar-
geting PPIs is ColabDesign,(p67) a de novo protein design pipeline 
powered by fold-based models. Building upon this, Kosugi and 
FIGURE 2 
The diffusion model and the peptide design pipeline. (a) Diffusion model for
hallucination-based and (c) co-design methods. 

6 www.drugdiscoverytoday.com
Ohue(p68) introduced a solubility-aware extension that incorpo-
rates a solubility loss function based on amino acid solubility 
indices. This refinement improved the ColabDesign binder hallu-
cination protocol, enhancing the solubility of the generated 
sequences by weighting the solubility loss function. 

Bryant and Elofsson(p69) later introduced EvoBind, an 
advanced framework for peptide binder design that integrates 
multiple computational tools to streamline the design process. 
The framework initially uses Foldseek(p70) to generate seed struc-
tures, followed by ESM-IF1(p71) for inverse folding to create 
sequences that align with the predicted backbone structures. 
These protein–peptide complexes are then evaluated using AF 
to ensure binding stability and accuracy. Notably, EvoBind gen-
erates successful binders with interface RMSD 2 Å for 185 
(6.5%) heteromeric and 42 (3.6%) homomeric protein interfaces, 
significantly outperforming ProteinMPNN,(p72) which achieves 
18 (1.5%) successful designs from the same 100 samples. Here, 
ProteinMPNN is developed for protein sequence design as AF is 
designed for protein structure prediction. This DL-based algo-
rithm predicts amino acid sequences for specified protein back-
bones and is widely used as a benchmark in the field of protein 
inverse folding.(p10),(p11) 

The newly introduced EvoBind2(p73) revolutionizes peptide 
binder design by using only the amino acid sequence of the tar-
get protein, without requiring the prior knowledge of binding 
sites, templates, or binder lengths, making it suitable for novel 
targets. A key issue in peptide design is avoiding adversarial
Drug Discovery Today 
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sequences with high predicted local difference distance test 
(pLDDT) scores but weak binding. To address this, integrating 
AFM for validation significantly reduces false positives and triples 
the success rate, ensuring more reliable designs. EvoBind2 also 
supports cyclic peptide input through a cyclic offset.(p74),(p75) 

Experimental validation demonstrated that the designed pep-
tides achieved binding affinities ranging from 5.7 lM  t  
0.26 nM for cyclic peptides and from 7.9 lM to 19 nM for linear 
peptides, with success rates of 75% and 46%, respectively.

Iterative optimization methods can be enhanced with rein-
forcement learning (RL) for more effective results. Wang et al.(p76) 

introduced EvoPlay, a self-play RL framework designed to opti-
mize protein sequences for specific functional or structural goals. 
Both EvoBind and EvoPlay aim to design high-affinity peptide 
binders, but EvoPlay offers a more efficient and robust solution 
by integrating RL with look-ahead Monte Carlo Tree Search 
(MCTS). This ability to balance exploration and exploitation 
gives EvoPlay an advantage over EvoBind, which is prone to local 
optima and higher computational costs. EvoPlay has been suc-
cessfully applied to design peptide binders and optimize pro-
teins, such as GFP and PAB1, for enhanced function, 
highlighting its broad potential in tackling various protein-
engineering challenges. 

Hallucination stands out for its simplicity and flexibility, 
enabling novel peptide design tasks by integrating new loss func-
tions into existing structure-prediction models.(p77) Many 
advances in protein structure design are transferable to peptide 
research, allowing for precise exploration of peptide-specific 
structural and sequence spaces. For example, Verkuil(p78) applied 
sequence-based methods, leveraging language models trained 
solely on sequence data to explore a broader space of natural pro-
teins beyond conventional structure-based approaches. Another 
example of enhanced sequence optimization is provided by 
Frank et al.,(p79) who hypothesized that gradient descent-based 
hallucination could be improved by relaxing the constraints of 
discrete (i.e., physically realistic) protein sequence space. This 
relaxed sequence optimization (RSO) approach offers notable 
benefits, including greater designability, broader applicability 
across diverse design challenges, and scalability to proteins of dif-
ferent sizes. 

Exciting progress has been made in peptide inverse folding. 
Models, such as ProteinMPNN, a message-passing encoder–de-
coder, have a key role in structure-based design by predicting 
amino acid sequences that fold into desired structures. However, 
when applied to peptides, they often generate repetitive 
sequences that fail to match the reference structure. To overcome 
this, Park et al.(p80) fine-tuned ProteinMPNN using direct prefer-
ence optimization (DPO), introducing two major improvements: 
online diversity regularization and domain-specific priors. These 
enhancements not only promote more diverse sequence genera-
tion, but also ensure high structural fidelity. When conditioned 
on OpenFold-generated(p52) structures, their method achieves 
state-of-the-art similarity scores, improving the baseline of Pro-
teinMPNN by over 8% and increasing sequence diversity by up 
to 20% without compromising structural accuracy. 

A major advantage of this framework is its ability to leverage 
advancements in protein design for rapid adaptation to peptides. 
By building on the structure prediction network, it facilitates pre-
cise exploration of broad structure and sequence spaces, thereby 
enabling the generation of high-quality peptide structures for 
effective design, optimization, and future applications. 

Sequence-structure co-design methods 
Existing DL methods for peptide design fall into structure-based 
and sequence-based approaches. Structure-based design gener-
ates a peptide backbone first, followed by a compatible sequence, 
leveraging detailed structural information but suffering from 
constraints resulting from limited and biased data sets. By con-
trast, sequence-based methods directly generate sequences, 
allowing for generalization to broader domains or disordered 
regions, thus often resulting in noisier predictions because of 
limited structural guidance. To overcome these limitations, 
emerging co-generation models integrate sequence and structure 
reasoning throughout the design process, improving accuracy 
and consistency, and enabling the design of peptides with com-
plex conformations and dynamic properties (Figure 2c). 

An outstanding co-design model, DiffPepBuilder, was devel-
oped by Wang et al.(p29) This model uses an SE(3)-equivariant dif-
fusion architecture, incorporating protein language model 
(pLM)(p81) embeddings and positional encodings as node fea-
tures, while using a distogram to encode edge information. It 
converts 3D coordinates into local reference frames, which inter-
act via a Cross Update Module. The multitask decoder then out-
puts translational and rotational scores, predicted residue types, 
torsion angles, and residue entropies. To enhance peptide stabil-
ity and binding potency, the authors introduced an SSBuilder 
module within DiffPepBuilder to strategically design disulfide 
bonds. MD simulations on 30 validated peptide binders con-
firmed that disulfide bonds increased peptide rigidity and 
improved binding performance. Comparative studies on three 
biological targets demonstrated that DiffPepBuilder outper-
formed ColabDesign and RFdiffusion (with ProteinMPNN) in 
terms of recall, interface quality, and structural diversity. 

Considering the non-conserved nature of peptide backbones, 
co-designing both peptide sequence and structure remains par-
ticularly challenging. Models addressing this challenge often rely 
on all-atom representations to capture subtle side-chain interac-
tions. In this regard, DiffPepBuilder encodes side-chain atoms of 
each residue using frames parameterized within the SE(3) mani-
fold, providing flexible handling of varying atom types and 
counts across different residues. 

PepGLAD, introduced by Kong et al.,(p82) , tackles two major 
challenges in peptide design: the intricacies of full-atom geome-
try and the variability of binding conformations. This geometric 
latent diffusion model leverages a VAE to encode residues of 
varying sizes into fixed-dimensional latent spaces, improving 
the efficiency of diffusion processes. In addition, through 
receptor-specific  affine transformations, it aligns peptide 3D 
coordinates within a common space, boosting the generalization 
capabilities of the model. PepGLAD enhances peptide sequence– 
structure co-design diversity by 18%, in silico success rates by 8%, 
and recovery of reference binding conformations by 26%.

Beyond diffusion models, flow-matching frameworks have 
emerged as powerful tools in peptide design. PepFlow, developed 
by Li et al.,(p83) is a multimodal generative model based on the 
flow-matching framework. It captures residue backbone orienta-
www.drugdiscoverytoday.com 7
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tions and side-chain dynamics crucial to PpIs by representing 
rigid backbones in SE(3) space and encoding side-chain angles 
on high-dimensional tori. The peptide sequence is represented 
as categorical distributions over the probability simplex. By 
learning joint distributions across these modalities via flows 
and vector fields on their corresponding manifolds, PepFlow 
excels in tasks such as fix-backbone sequence design and side-
chain packing. For sequence-structure co-design, PepFlow excels 
in metrics including geometry (e.g., AAR, RMSD), energy (e.g., 
stability, affinity), and diversity. However, it lags behind RFdiffu-
sion in terms of designability. Despite this limitation, extensive 
benchmarking underscores the robust performance of PepFlow 
and significant potential to advance computational peptide 
design methodologies. 

Sequence-based methods 
The success of structure-based peptide binder design, as discussed 
above, typically relies on high-resolution co-crystal structures for 
accurate modeling. However, high-quality structural data remain 
scarce, and structure-based methods are inherently limited by 
the static nature of such data, diminishing their effectiveness 
for proteins that undergo dynamic structural transitions. Nota-
bly, this approach faces significant challenges when applied to 
disordered or unstable proteins, such as certain transcription fac-
tors, because of their crystallization difficulties and tendency to 
adopt multiple conformations.(p84) 

To address these challenges, pLMs have introduced a 
sequence-based paradigm for target-specific peptide binder 
design. These large-scale models are trained on vast protein 
sequence data sets, capturing not only key physicochemical 
properties, but also higher-order structural features. Among 
these, ESM2 stands out for its robustness, leveraging masked lan-
guage modeling (MLM) tasks to predict protein functions, design 
antibodies, and even predict protein structures.(p20) Building on 
the advances in pLMs, de novo peptide design methods have 
emerged, proving particularly valuable for proteins lacking reli-
able structural data or those previously considered ‘undruggable’. 

PepMLM(p85) is a representative pLM-based method specifi-
cally designed for generating peptides targeting protein 
sequences. It functions by placing a contiguous mask at the C 
terminus of a target protein sequence, representing the peptide 
yet to be generated, and then uses ESM2 to reconstruct the 
masked region, producing high-affinity peptide binders. Empiri-
cal results demonstrate that PepMLM achieves a hit rate exceed-
ing 38%, significantly outperforming RFdiffusion. In addition, 
when integrated into a ubiquitin-binding antibody (ubiAb) sys-
tem, it shows promising potential in degrading intrinsically dis-
ordered proteins, such as TRIM8. 

For applications requiring even higher specificity, especially 
when targeting discrete motifs, moPPIt offers a motif-specific 
PPI-targeting algorithm.(p86) Central to this approach is BindEval-
uator, a transformer-based model that interpolates between two 
pLM embeddings using multi-headed self-attention, prioritizing 
local motif features. Trained on over 510 000 annotated PPI data 
points, BindEvaluator achieves an impressive test AUC of >0.94, 
which increases above 0.96 when fine-tuned on protein–peptide 
pairs. By combining BindEvaluator with PepMLM and a genetic 
8 www.drugdiscoverytoday.com
optimization step, moPPIt generates peptides that selectively 
bind key residues on a target protein. Notably, moPPIt extends 
beyond known targets, successfully accommodating previously 
unexplored structured or disordered proteins, offering a robust 
solution for dynamic or structurally elusive targets. 

Another sequence-based framework for designing target-
specific peptides, Cut&CLIP, was introduced by Palepu et al.(p87) 

This method integrates pretrained protein embeddings with con-
trastive learning to design peptides that not only bind to target 
proteins, but also induce degradation via an E3 ubiquitin ligase 
domain. By jointly encoding both proteins and candidate pep-
tides, the model captures essential similarities between known 
protein–peptide pairs. Experimental validation demonstrated 
that fusing the generated peptides with ubiAb constructs consis-
tently led to the degradation of pathogenic proteins in human 
cells, highlighting the effectiveness of this framework for 
peptide-mediated protein degradation. 

Collectively, pLMs are proving to be highly promising com-
plementary tools to structure-based peptide design. This success 
marks a significant milestone in sequence-level peptide design, 
significantly expanding the potential for programmable pro-
teome editing and novel strategies against traditionally ‘undrug-
gable’ targets. When combined with insights into protein 
degradation mechanisms such as ubiAb, these models open 
exciting new avenues for precise protein control and the devel-
opment of next-generation therapeutics. As pLMs continue to 
evolve, we can anticipate further breakthroughs in de novo pep-
tide design, programmable protein editing, and targeted drug 
development. 

Evaluation metrics 
In peptide design, two primary evaluation metrics are commonly 
used: self-consistency and diversity. Self-consistency assesses the 
alignment of generated sequences with their corresponding 
backbone structures, with methods such as ProteinMPNN serv-
ing as the standard.(p64) Diversity measures the ability of the 
model to generalize beyond the training data by calculating 
backbone RMSD or TM-scores(p88) through alignment with struc-
tural data from sources such as the PDB or AF. However, the 
absence of standardized benchmarks complicates comparisons 
across different peptide design studies and models for antibodies 
or protein binders. Although experimental validation serves as a 
gold standard for some self-consistency assessments, most novel 
co-design models still heavily rely on MD simulations. 

Binding energy is key metric for assessing the stability of tar-
get–peptide interactions and selecting top peptides for further 
analysis. Rosetta binding energy(p89) is commonly used to rank 
the generated peptides. Confidence scores from AF also serve as 
proxies for binding affinity, assisting peptide ranking.(p59) The 
interface predicted template modeling (ipTM) score is effective 
for evaluating PPIs and is similarly applied to rank peptides 
and assess protein–peptide structure predictions.(p90) However, 
the ipTM score has limitations, particularly its reliance on full-
length binding partners, which can introduce errors, especially 
in sequences with unstructured or flexible regions. These issues 
are more pronounced in PpIs, where binding interfaces are typi-
cally short and flexible. To address these challenges, the actual
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interface pTM (actifpTM)(p91) score was introduced, focusing on 
confident interface residues for a more accurate measure of inter-
action confidence, minimizing the influence of unstructured or 
flexible regions. 

Looking forward, future research should prioritize establish-
ing comprehensive data sets and benchmarks specifically tailored 
to peptide design. An integrated peptide design platform would 
encompass extensive data-driven model training, thorough eval-
uations, and experimental validations. Such a platform would lay 
the groundwork for the development of more effective peptide-
based therapeutics. 

Challenges and future perspectives 
Early drug development was dominated by the Lipinski’s rule-of-
five, favoring small molecules with molecular weights <500 Da, 
clogP <5, fewer than ten H-bond acceptors, and fewer than five 
H-bond donors to ensure favorable oral bioavailability.(p92) This 
guideline initially cast doubt on the feasibility of larger mole-
cules, such as proteins and peptides, as therapeutic agents.(p93) 

Despite natural peptides having crucial roles in regulating mem-
brane receptors and secretory proteins, their therapeutic poten-
tial is limited by poor thermal stability, rapid protease 
degradation, low binding affinity, and short half-lives, ultimately 
leading to low oral bioavailability. 

To overcome these limitations, expanding the peptide chem-
ical space through innovative strategies has become essential. For 
example, the introduction of NCAAs, N-methylation, and 
advanced cyclization techniques offers new avenues to enhance 
peptide stability and efficacy. Among these strategies, cyclic pep-
tides stand out in medicinal chemistry,(p94) attracting significant 
attention for their ability to constrain conformational flexibility, 
thereby reducing degradation, instability, and poor membrane 
permeability, which are key limitations of peptide-based 
therapeutics.(p95) 

Despite advancements in AI-driven models, existing structure-
based models for cyclic peptide design predominantly focus on 
conventional cyclization strategies, such as N-to-C terminal 
cyclization or disulfide bond formation. Unconventional meth-
ods, such as thioether cyclization, remain underexplored. The 
recent development of RFpeptides,(p96) based on RFdiffusion, 
enables the design of macrocyclic peptide binders for diverse pro-
tein targets. By incorporating cyclic relative position encodings 
and leveraging ProteinMPNN for sequence design, RFpeptides 
can create high-affinity binders with exceptional accuracy. This 
approach greatly enhances design efficiency, offering a powerful 
tool for therapeutic and diagnostic applications. 

Furthermore, the integration of NCAAs into DL-based models 
has yet to be fully realized, limiting the chemical diversity avail-
able for peptide design. Future work could integrate these strate-
gies into design frameworks by leveraging approaches such as the 
use of CCD by AF3 for modification data inputs. This would 
enhance the versatility and applicability of diffusion-based mod-
els, enabling more diverse and effective cyclic peptide designs. 
Although sequence-based peptide drug development offers 
broader applications across various therapeutic contexts, 
PepINVENT(p97) exemplifies this progress by using SMILES nota-
tion to represent peptide molecules. This approach captures non-
standard components, including NCAAs and unconventional 
cyclic structures. Designed with the needs of pharmaceutical 
researchers in mind, it bridges computational methods with 
real-world drug discovery. 
Concluding remarks 
In summary, the future of peptide design depends on our ability to 
understand and translate peptide structure–function relationships 
into computational frameworks. Although AI has already demon-
strated significant potential in peptide drug design, no AI-assisted 
peptide drugs have yet been approved by the US Food and Drug 
Administration (FDA). Most FDA-approved peptide drugs still rely 
on traditional drug discovery methods. However, with the progres-
sion of AI-driven techniques, this field is moving beyond tradi-
tional physics-based strategies toward data-driven approaches, 
unlocking new opportunities for innovative drug discovery. 

For target specific peptide binder design, although binding 
affinity is the key parameter in the initial phase in therapeutic 
development, high-affinity peptides must also satisfy pharma-
cokinetics. Future models should take a multi-objective 
approach, balancing efficacy, stability, and drug-like properties, 
to bridge computational predictions with real-world applications 
and push forward peptide-based drug discovery. 

An equally important consideration is peptide binder speci-
ficity. High-affinity binders are of limited practical use if they 
do not achieve high on-target specificity. Although structure-
based models often focus on optimizing binding energy, they 
might overlook the step of validating whether the binder can 
selectively target its intended protein. Future structure-based 
approaches should not prioritize structural accuracy alone; they 
must also consider multiple objectives, such as specificity, to 
minimize off-target effects. 

Peptide-based drug design is progressing, especially for well-
characterized receptors. New users should start with versatile 
models, such as AF3, whereas advanced users might explore 
diffusion-based or flow-matching DL models for specialized 
tasks. However, challenges persist, particularly in peptide flexibil-
ity, nonstandard modifications, and computational efficiency. 
Furthermore, combining molecular simulations with AI offers a 
synergistic approach to enhance peptide design strategies. Incor-
porating experimental validation is essential to ensure the accu-
racy, reliability, and real-world applicability of computational 
methods. This integrated approach will advance the develop-
ment of peptide-based therapeutics with both high specificity 
and efficacy. 
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