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Protein—protein interactions (PPIs) are fundamental to a variety of biological processes, but targeting
them with small molecules is challenging because of their large and complex interaction interfaces.
However, peptides have emerged as highly promising modulators of PPIs, because they can bind to
protein surfaces with high affinity and specificity. Nonetheless, computational peptide design remains
difficult, hindered by the intrinsic flexibility of peptides and the substantial computational resources
required. Recent advances in artificial intelligence (AI) are paving new paths for peptide-based drug
design. In this review, we explore the advanced deep generative models for designing target-specific
peptide binders, highlight key challenges, and offer insights into the future direction of this rapidly
evolving field.
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druggable’ targets, providing a more effective and biologically
natural path for future drug development.

The development of peptide therapeutics traces back almost a
century to the isolation of insulin (Figure 1a).”*’ However, early

Introduction

PPIs have a pivotal role in biological processes, such as signal
transduction, cellular metabolism, and molecular transport, mak-
ing them potential targets for drug discovery.”" 2 However, the

large and shallow nature of PPI interfaces poses significant chal-
lenges to designing small molecules that target PPIs with high
binding affinity and specificity. Although antibodies effectively
recognize these interfaces, their poor membrane permeability
limits their applications against intracellular targets. By contrast,
peptides offer a balance between molecular flexibility and rigid-
ity, allowing them to bind PPIs with high affinity and specificity.
Their small size, coupled with favorable properties, such as ease of
synthesis, low toxicity, and minimal immunogenicity, further
enhance their clinical potential. For example, glucagon-like pep-
tide 1 (GLP-1) analogs have been successfully used to regulate
metabolism in diabetes treatment.”* These advantages position
peptide therapeutics as promising candidates for previously ‘un-
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efforts were impeded by the complexities of synthesis and purifi-
cation.™ Significant breakthroughs occurred during the 1960s
with the introduction of solid-phase peptide synthesis (SPPS)"®
and during the 1980s with the advent of recombinant technolo-
gies.”” These advancements revolutionized peptide production,
greatly accelerating research and commercialization efforts.”®
Currently, more than 100 peptide-based drugs have been
approved by the US Food and Drug Administration (FDA), with
many more in development, targeting a range of applications,
including immunosuppression, antimicrobial and antiviral ther-
apies, and cancer treatment.””

Despite these advancements, peptide drug development has
largely relied on natural products or their derivatives, with de
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Structural diversity and therapeutic applications of peptides targeting protein—protein interactions (PPI). (@) Diverse structures of insulin and various natural
peptides. Crosslinks are represented by sticks, with magenta highlighting non-canonical amino acids (NCAAs) and green marking p-amino acids; spheres
indicate the positions of side-chain Cg atoms and dashed lines denote hydrogen bonds. (b) A bioactive helical peptide (glucagon) bound to a protein

designed by RFdiffusion, 2%

with hydrogen bonds highlighted. (c) The backbone atoms and side-chain atoms for each residue. Abbreviation: PDB,

Protein Data Bank. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

novo peptide design posing a considerable challenge. A major
bottleneck stems from the structural characterization of peptides,
because their intrinsic flexibility enables them to adopt various
conformations, complicating accurate modeling and prediction.
Moreover, the scarcity of structural data on protein—peptide com-
plexes, coupled with the incorporation of non-canonical amino
acids (NCAAs) and unconventional cyclic structures, further
complicates the design process (Figure 1a). Traditional computa-
tional approaches, such as molecular docking and molecular
dynamics (MD) simulations, are often constrained by their high
computational costs, limiting their applicability across a range of
design scenarios.P'?» 1Y),

Al, particularly deep learning (DL), has emerged as a transfor-
mative tool in peptide design, and can process intricate structural
data and capture nonlinear patterns with exceptional precision.
We start this review with an overview of key data sets related to
protein—peptide interactions (Ppls), emphasizing advances in pre-
dicting these interactions and modeling protein-peptide complex
structures. Next, we summarize methods for target-specific pep-
tide design, demonstrating their practical applications through
illustrative case studies that highlight their importance in drug
discovery. We also provide a comprehensive overview of recent
advances in deep generative models for peptide design. Finally,
we discuss the current challenges faced by Al in this field and
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conclude by outlining future directions, offering insights and
direction for advancing next-generation peptide therapeutics.

Protein-peptide interactions

It has been estimated that 15-40% of all PPIs within cells are
mediated by Ppls,”'* and a comprehensive understanding of
Ppls is essential for advancing peptide-based therapeutics. Here,
we provide an overview of key data sets related to Ppls, predic-
tion methods for Ppls, and structural modeling approaches for
protein—peptide complexes. These advances establish a funda-
mental structural framework for data-driven and Al-powered
peptide design, empowering researchers to develop target-
specific peptides more effectively.

Protein—peptide interaction databases

Structural information about Ppls is essential for understanding
the properties and functional mechanisms of peptides. Ppl
databases can be classified into three main types based on their

(ii) peptide-specific data sets that include benchmarks; and (iii)
customized data sets originating from research studies. Table 1
provides examples of type (ii) and (iii) data sets with >300 entries.

In recent years, DL has gained significant traction in peptide
science, empowering tasks such as peptide identification, prop-
erty prediction, and peptide generation,?'> fueled by the
expanding structural data sourced from repositories, including
the Protein Data Bank (PDB)."'® However, the scarcity of high-
quality structural data poses a significant challenge to training
large-scale models, thereby hindering advances in peptide-
based predictions. Unlike proteins, peptides exhibit high
conformational flexibility, which complicates their structural
characterization. Most protein—-peptide complexes in Table 1
are sourced from PDB, often with significant redundancy and
predominantly short peptides, which limits structural diversity
and conformational space coverage. In addition, some databases
are outdated, with inaccessible websites, with only a few being
actively updated alongside PDB. Overall, the availability of

construction purpose: (i) large-scale general data sets; high-quality structural data for peptide complexes remains
TABLE 1
Protein-peptide interaction databases
Name Type Description and features Length Size Year Web server Refs
CPSet 2 Protein-cyclic peptide complex 5-20 residues 493 2024  https://github.com/ (p23)
data set sourced from PDB huifengzhao/CPSet
ProPedia 2 Comprehensive data set of 2-50 residues 19813 2021  https://bioinfo.dcc.ufmg. (p24)
experimental protein—peptide br/propedia
complexes, for peptides ranging
from 2 to 50 residues
PepBDB 2 Curated structural database of <50 residues 13 299 2018  https://huanglab.phys. (p25)
biological peptide-mediated hust.edu.cn/pepbdb
interactions
PepSite 2 Recently determined, refined X- 3-20 residues 405 2012 https:/pepsite2. (p26),(p27)
ray structures russelllab.org (updated
on 2021)
PepX 2 Peptide <10 residues from PDB, 5-35 residues 1431 2009  https://pepx.switchlab. (p28)

divided into 505 unique protein-
peptide interface clusters.
Buried interfacial peptide
fragments with their
corresponding binding proteins;
total of 232 helical peptides and
3600 nonhelical peptides

PepPC-F/PepPC 3

8-30 residues

org (unavailable)
14 897/3832 2024  https://github.com/ (p29)
YuzheWangPKU/
DiffPepBuilder

PplI[S/Algm 3 Similar data set to Ppl[S/A]ps with 4-28 residues 356 2024 - (p30)
different scope of K4 and pKg.

PPI-Affinity 3 Binding affinity data expressed 3-29 residues 1149 2022  https://protdcal.zmb.uni-  (p31)
as dissociation (Kg) or inhibition due.de/PPIAffinity
(K)) constants (unavailable)

SPRINT-Str 3 Protein—-peptide complexes <30 residues 1241 2018  https://sparks-lab.org/ (p32)
filtered for peptides with <0 server/SPRINT-Str
residues, clustered by 30% (unavailable)
sequence identity

PixelDB 3 Nonredundant, high-resolution 5-50 residues 1966 2017  https://github.com/ (p33)
structures of protein—peptide KeatingLab/PixelDB
complexes, filtered to minimize
impact of crystal packing on
peptide conformation

PepBind 3 Collection of protein—peptide <35 residues 3100 2013  https://pepbind.bicpu. (p34)

complex data from PDB,
featuring structural, sequence,
and experimental information for
peptides <35 residues

edu.in (unavailable)
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limited compared with small molecules, posing challenges for
data-driven research. Importantly, studies have indicated that
protein loop regions share structural and dynamic similarities
with peptides, making these regions a valuable resource for con-
formational analysis and benchmarking peptide-modeling
methods.”'”

In protein structure prediction, researchers use alternative
sequence data, such as the ~300 million sequences in
UniProt,?'® to overcome the limitations of structural data sets.
To enhance prediction accuracy, AlphaFold2®'? (AF2) leverages
multiple sequence alignments (MSAs) and ESMFold**” captures
coevolutionary signals, highlighting the importance of integrat-
ing both sequence and structural information. Another effective
solution lies in the use of virtual structural data sets. High-
precision structure prediction models can rapidly generate
large-scale structural data, facilitating the creation of extensive
databases, such as the AlphaFold Protein Structure Database*"
(AFDB). Furthermore, these databases support rapid screening
and the customization of task-specific data sets. Incorporating
virtual structures has been demonstrated to significantly improve
model performance, marking a crucial advance in structural pre-
diction and drug design."*? However, future efforts should focus
on improving the success rate of peptide design using expansive
external databases to maximize their utility and impact.

Protein-peptide interaction prediction

Accurate prediction of Ppls can guide peptide optimization
through effective amino acid substitutions and backbone modifi-
cations. Researchers have developed various computational
methods to identify peptide-binding residues on protein sur-
faces. One example is PepBind,**> which operates on the pre-
mise that protein-binding residues are static and independent
of the peptide involved. Nonetheless, different peptides can
interact with the same protein through different binding modes,
leading to diverse residue interactions, which limits the applica-
bility of PepBind in complex biological systems.

For accurate and efficient prediction of Ppls, it is necessary to
integrate both sequence and structural data. InterPep,™*® a
structure-based model, applies random forest algorithm and hier-
archical clustering to predict the most likely peptide-binding
sites on proteins. However, its dependency on 3D structural data
and peptide sequences restricts its applicability to proteins with
resolved structures.

To overcome these limitations, Lei et al.”*” introduced
CAMP, a DL framework that can simultaneously predicts Ppls
and identifies key binding residues within peptides. By combin-
ing convolutional neural networks (CNNs) with self-attention
mechanisms, CAMP efficiently extracts both local and global fea-
tures, enabling it to not only predict Ppls, but also identify criti-
cal binding sites.

Similarly, Abdin et al.”*® proposed PepNN, a parallel predic-
tion model that integrates sequence and structural data. PepNN
takes protein structures and peptide sequences as inputs and gen-
erates residue-level scores to evaluate the probability of peptide
binding. The model features two unique architectures: PepNN-
Struct, which captures structural context using graph attention
layers, and PepNN-Seq, which focuses on sequence-based
predictions.

Despite the extensive exploration of machine learning (ML)
and DL for predicting Ppls, the Molecular Surface Interaction
Fingerprinting (MaSIF) framework”*?) represents a transforma-
tive, generalized approach that bridges the understanding of PPIs
and broader protein-ligand interactions. By harnessing geomet-
ric DL, MaSIF directly deciphers interaction fingerprints from
protein molecular surfaces, revealing complex patterns with
ligands, peptides, and other proteins. Together, these develop-
ments are providing deeper insights into Ppls and offering more
accurate and efficient tools for peptide-based drug design.

Protein—peptide complex structure prediction

Accurate prediction of protein—peptide complex structures is
valuable for effective peptide design. As a primary tool in this
endeavor, molecular docking can predict peptide binding modes
by optimizing molecular conformations, orientations, and posi-
tions on the potential energy surface. Protein—peptide docking
methods are broadly categorized into template-based and
template-free approaches. Template-based docking uses known
complex structures for predictions and performs well in specific
tasks, but its applicability is limited by the availability and diver-
sity of templates. By contrast, template-free docking does not
require prior structural information, making it more versatile
for a broader range of targets, including those without resolved
structures. As a result, template-free docking has become a major
research focus. Within this category, methods are further divided
into local docking (e.g, DynaDock®*?” and Rosetta
FlexPepDock™") and global docking (e.g., PIPER-
FlexPepDock*? and HPEPDOCK"*®). Furthermore, tools such
as AutoDock CrankPep** (ADCP) support flexible cyclic pep-
tide modeling, thereby offering new possibilities for the develop-
ment of peptide-based therapeutics.

Despite these advances, modeling and scoring protein—pep-
tide complexes remain challenging. Unlike small molecules, pep-
tides exhibit high conformational flexibility and can adopt
various structures that adapt dynamically to their chemical envi-
ronments. It is possible that peptides are disordered when
unbound but stabilize into specific conformations upon interact-
ing with proteins. In addition, peptide-target binding commonly
relies on water-mediated hydrogen bonds, and modeling interfa-
cial water molecules adds another layer of complexity to this
challenge.**

Extensive studies indicate that existing docking methods
often struggle to accurately capture the native conformations
of peptides,P>*P53) constrained by their intrinsic flexibility
and the limitations of scoring algorithms.”>* Nevertheless, MD
simulations offer invaluable insights into the thermodynamics,
kinetics, and mechanistic details of protein-peptide binding
and dissociation. However, the reliability of these simulations
depends on the accuracy of the physical models used and the
effectiveness of sampling energy landscapes. Unfortunately,
achieving exhaustive sampling remains computationally infeasi-
ble with existing resources.”'"

DL provides advanced solutions that transcend traditional
limitations by directly learning scoring criteria from data, elimi-
nating the requirement for explicit conformational enumera-
tion. Table 2 presents common tools for biomolecular structure
prediction, highlighting representative Al-driven methods cap-
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TABLE 2

Common DL-based tools for biomolecular structure prediction

Name Description and features Year Open Web server Refs
source

AF3/AFM Cutting-edge Al model by DeepMind that predicts protein structures 2024 Inference https:/ (p46)
with near-experimental accuracy, using diffusion-based architecture to github.com/google-
model complex biomolecular systems, including proteins, nucleic acids, deepmind/alphafold3
small molecules, and ions

RFAA/RoseTTAFold Biomolecular structure prediction neural network that can predict broad 2024 Inference https://github.com/baker-  (p47)
range of biomolecular assemblies, including proteins, nucleic acids, laboratory/RoseTTAFold-
small molecules, covalent modifications, and metals All-Atom

Chai-1 Multi-modal foundation model for molecular structure prediction that 2024 Inference https://github.com/ (p48)
performs at state-of-the-art across variety of benchmarks; enables chaidiscovery/chai-lab
unified prediction of proteins, small molecules, DNA, RNA,
glycosylations, and more

HelixFold3 Replicates capabilities of AF3 in biomolecular structure prediction, 2024 Inference https://github.com/ (p49)
achieving accuracy on par with AF3 for predicting structures of proteins, PaddlePaddle/PaddleHelix
nucleic acids, and conventional ligands

Protenix Trainable PyTorch reproduction of AF3 2024 Trainable https://github.com/ (p50)

bytedance/Protenix

Boltz-1 SOTA open-source model to predict biomolecular structures containing 2024 Trainable https://github.com/ (p51)
combinations of proteins, RNA, DNA, and other molecules; also supports jwohlwend/boltz
modified residues, covalent ligands, and glycans, as well as conditioning
prediction on specified interaction pockets or contacts

OpenFold Trainable, memory-efficient, and GPU-friendly PyTorch reproduction of 2024 Trainable https://github.com/ (p52)

AF2

aqlaboratory/openfold

able of predicting protein-peptide complex structures. For exam-
ple, AF captures structural physics from coevolutionary signals
using MSA features, enabling the prediction of atomic-level 3D
structures. This approach is effective for modeling peptides up
to 40 amino acids with well-defined secondary structures and
limited flexibility,">> and also supports the prediction of pro-
tein—peptide complex structures.”*® Using accurate prediction
of protein-peptide complex structures, Mondal et al.*>” intro-
duced an AF Competition Binding Assay'"*® pipeline to identify
the most likely binding polypeptides from peptide libraries, aid-
ing the study of PPIs, epitope identification, and design of high-
affinity binding epitopes.

The recently developed AF3%*® and RFAA®*” support all-
atom modeling, enabling precise structure prediction for pro-
tein-ligand complexes, including peptides. These advances not
only enhance prediction accuracy and stability, but also intro-
duce innovative strategies for peptide design. However, compre-
hensive benchmarks on peptide-related structures remain
limited. To address this, it is essential to resolve data-quality
and cleaning issues, incorporate cutting-edge models, and to
develop tailored approaches specifically for short peptides (5—
30 residues), which are often overlooked by conventional MSA-
based methods.

MSA is crucial for protein structure prediction, but its applica-
tion in protein—peptide structure prediction is limited because of
the shorter length and lesser evolutionary conservation of pep-
tides compared with proteins. AF3 shows potential in modeling
non-canonical modifications, such as modified peptides and
macrocycles, through its support for user-defined Chemical
Component Dictionaries (CCDs). However, the success rate for
these structures remains uncertain, necessitating further research

to assess its capabilities, especially in predicting protein—peptide
complexes. To enhance the performance of AF3 in this area, sys-
tematic studies are essential, along with improvements in pre-
processing tools, docking functions, structure accuracy
measures, and data sets.

Despite the scarcity of literature on AF3-based peptide model-
ing, initial studies highlight its potential in protein—peptide com-
plex prediction. For example, Manshour et al.”>? evaluated AFM,
ColabFold (CF), and AF3 using a benchmark data set of 60 pro-
tein—peptide complexes. AF3 generated high-quality structures
with fewer models compared with AFM, which relied on a larger
model pool. However, the performance of AF3 was limited by its
small model pool, accessible solely via a web server, emphasizing
the trade-off between model pool size and computational
resources in protein—peptide complex prediction.

As DL tools evolve and data sets expand, future evaluation
pipelines are expected to improve, especially for nonstandard
and macrocyclic peptides. Although AF3 shows considerable pro-
mise in Ppl modeling, its application to modified peptides and
macrocycles requires further validation. With advances in evalu-
ation methods and technologies, the role of AF3 in peptide-based
drug design is expected to expand significantly.

Target-specific peptide drug design

Despite progress in rational peptide design and combinatorial
chemistry, P°?- ¢! existing methods continue to struggle with
achieving a balance between efficiency and accuracy. A key
obstacle is that many functional peptides exist in disordered
states or can freely transition between multiple conformations,
complicating the design process. Designing peptide binders for
protein targets is challenging because of the need to accurately
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predict their optimal bound conformations. Moreover, the lack
of secondary structures, typically found in proteins, introduces
additional constraints to peptide design.

ML-based approaches have significantly advanced the field of
de novo protein design, with diffusion-based generative methods
becoming increasingly central to modern design pipelines®”
(Figure 2a). The boundary between peptide design models and
protein design has become blurred, because many models now
extensively use methodologies originally devised for proteins.
For the sake of consistency and clarity, the well-established clas-
sification framework from protein design was adopted.*®® For a
foundational understanding, readers may refer to recent litera-
ture on diffusion models in structural biology.”** Here, we focus
on two widely used strategies in de novo peptide binder design:
hallucination-based methods and structure-sequence co-design
methods (Figure 2b).

Hallucination-based methods

Various hallucination methods for protein design have been
developed, all aimed at generating novel sequences that fold into
stable, unseen structures. These methods optimize random
sequences using structure prediction algorithms, such as AF
and iterative techniques, including Markov chain Monte Carlo
(MCMC), guided by folding-aware loss functions®®> % (Fig-
ure 2b). A well-established framework for designing peptides tar-
geting PPIs is ColabDesign,”®” a de novo protein design pipeline
powered by fold-based models. Building upon this, Kosugi and

Ohue”®® introduced a solubility-aware extension that incorpo-
rates a solubility loss function based on amino acid solubility
indices. This refinement improved the ColabDesign binder hallu-
cination protocol, enhancing the solubility of the generated
sequences by weighting the solubility loss function.

Bryant and Elofsson”®” later introduced EvoBind, an
advanced framework for peptide binder design that integrates
multiple computational tools to streamline the design process.
The framework initially uses Foldseek””? to generate seed struc-
tures, followed by ESM-IF1%°7" for inverse folding to create
sequences that align with the predicted backbone structures.
These protein-peptide complexes are then evaluated using AF
to ensure binding stability and accuracy. Notably, EvoBind gen-
erates successful binders with interface RMSD < 2 A for 185
(6.5%) heteromeric and 42 (3.6%) homomeric protein interfaces,
significantly outperforming ProteinMPNN,?”? which achieves
18 (1.5%) successful designs from the same 100 samples. Here,
ProteinMPNN is developed for protein sequence design as AF is
designed for protein structure prediction. This DL-based algo-
rithm predicts amino acid sequences for specified protein back-
bones and is widely used as a benchmark in the field of protein
inverse folding.®'?®!V

The newly introduced EvoBind2®”? revolutionizes peptide
binder design by using only the amino acid sequence of the tar-
get protein, without requiring the prior knowledge of binding
sites, templates, or binder lengths, making it suitable for novel
targets. A key issue in peptide design is avoiding adversarial

Diffusion model

(a)
, PoCai-al2) iy, polxlze)  —~wV
~. . K= i i Zp — 1 Z7 Cm———— Zy —_—
Gaussian noise <====-=
q(z¢|ze-1)
zp~N(0,1) q(zolx)
T x
q(z¢]x)
(b) (c)
Sequence generation
Random Peptide binder ’ > HAEGT...KGRG
sequence SHEHITS N' Gaussian noise Sequence
HAEGT...KGRG prediction network N(0,1)
2T Co-design o
Target 22 =
n o
Update o
function >
Targst M Inverse folding
HAEGT...KGRG
Hallucination-based method

Structure
Structure and sequence

Co-design method

Drug Discovery Today

The diffusion model and the peptide design pipeline. (a) Diffusion model for target-specific peptide binder design. Peptide binder design with (b) the

hallucination-based and (c) co-design methods.
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sequences with high predicted local difference distance test
(pLDDT) scores but weak binding. To address this, integrating
AFM for validation significantly reduces false positives and triples
the success rate, ensuring more reliable designs. EvoBind2 also
supports cyclic peptide input through a cyclic offset.””*- 7%
Experimental validation demonstrated that the designed pep-
tides achieved binding affinities ranging from 5.7 pM to
0.26 nM for cyclic peptides and from 7.9 uM to 19 nM for linear
peptides, with success rates of 75% and 46%, respectively.

Iterative optimization methods can be enhanced with rein-
forcement learning (RL) for more effective results. Wang et al.*’®
introduced EvoPlay, a self-play RL framework designed to opti-
mize protein sequences for specific functional or structural goals.
Both EvoBind and EvoPlay aim to design high-affinity peptide
binders, but EvoPlay offers a more efficient and robust solution
by integrating RL with look-ahead Monte Carlo Tree Search
(MCTS). This ability to balance exploration and exploitation
gives EvoPlay an advantage over EvoBind, which is prone to local
optima and higher computational costs. EvoPlay has been suc-
cessfully applied to design peptide binders and optimize pro-
teins, such as GFP and PAB1, for enhanced function,
highlighting its broad potential in tackling various protein-
engineering challenges.

Hallucination stands out for its simplicity and flexibility,
enabling novel peptide design tasks by integrating new loss func-
tions into existing structure-prediction models.”’” Many
advances in protein structure design are transferable to peptide
research, allowing for precise exploration of peptide-specific
structural and sequence spaces. For example, Verkuil®”® applied
sequence-based methods, leveraging language models trained
solely on sequence data to explore a broader space of natural pro-
teins beyond conventional structure-based approaches. Another
example of enhanced sequence optimization is provided by
Frank et al.,?”® who hypothesized that gradient descent-based
hallucination could be improved by relaxing the constraints of
discrete (i.e., physically realistic) protein sequence space. This
relaxed sequence optimization (RSO) approach offers notable
benefits, including greater designability, broader applicability
across diverse design challenges, and scalability to proteins of dif-
ferent sizes.

Exciting progress has been made in peptide inverse folding.
Models, such as ProteinMPNN, a message-passing encoder—de-
coder, have a key role in structure-based design by predicting
amino acid sequences that fold into desired structures. However,
when applied to peptides, they often generate repetitive
sequences that fail to match the reference structure. To overcome
this, Park et al.?®” fine-tuned ProteinMPNN using direct prefer-
ence optimization (DPO), introducing two major improvements:
online diversity regularization and domain-specific priors. These
enhancements not only promote more diverse sequence genera-
tion, but also ensure high structural fidelity. When conditioned
on OpenFold-generated”>? structures, their method achieves
state-of-the-art similarity scores, improving the baseline of Pro-
teinMPNN by over 8% and increasing sequence diversity by up
to 20% without compromising structural accuracy.

A major advantage of this framework is its ability to leverage
advancements in protein design for rapid adaptation to peptides.
By building on the structure prediction network, it facilitates pre-

cise exploration of broad structure and sequence spaces, thereby
enabling the generation of high-quality peptide structures for
effective design, optimization, and future applications.

Sequence-structure co-design methods

Existing DL methods for peptide design fall into structure-based
and sequence-based approaches. Structure-based design gener-
ates a peptide backbone first, followed by a compatible sequence,
leveraging detailed structural information but suffering from
constraints resulting from limited and biased data sets. By con-
trast, sequence-based methods directly generate sequences,
allowing for generalization to broader domains or disordered
regions, thus often resulting in noisier predictions because of
limited structural guidance. To overcome these limitations,
emerging co-generation models integrate sequence and structure
reasoning throughout the design process, improving accuracy
and consistency, and enabling the design of peptides with com-
plex conformations and dynamic properties (Figure 2c).

An outstanding co-design model, DiffPepBuilder, was devel-
oped by Wang et al.®***) This model uses an SE(3)-equivariant dif-
fusion architecture, incorporating protein language model
(PLM)*®Y embeddings and positional encodings as node fea-
tures, while using a distogram to encode edge information. It
converts 3D coordinates into local reference frames, which inter-
act via a Cross Update Module. The multitask decoder then out-
puts translational and rotational scores, predicted residue types,
torsion angles, and residue entropies. To enhance peptide stabil-
ity and binding potency, the authors introduced an SSBuilder
module within DiffPepBuilder to strategically design disulfide
bonds. MD simulations on 30 validated peptide binders con-
firmed that disulfide bonds increased peptide rigidity and
improved binding performance. Comparative studies on three
biological targets demonstrated that DiffPepBuilder outper-
formed ColabDesign and RFdiffusion (with ProteinMPNN) in
terms of recall, interface quality, and structural diversity.

Considering the non-conserved nature of peptide backbones,
co-designing both peptide sequence and structure remains par-
ticularly challenging. Models addressing this challenge often rely
on all-atom representations to capture subtle side-chain interac-
tions. In this regard, DiffPepBuilder encodes side-chain atoms of
each residue using frames parameterized within the SE(3) mani-
fold, providing flexible handling of varying atom types and
counts across different residues.

PepGLAD, introduced by Kong et al.,"®?, tackles two major
challenges in peptide design: the intricacies of full-atom geome-
try and the variability of binding conformations. This geometric
latent diffusion model leverages a VAE to encode residues of
varying sizes into fixed-dimensional latent spaces, improving
the efficiency of diffusion processes. In addition, through
receptor-specific affine transformations, it aligns peptide 3D
coordinates within a common space, boosting the generalization
capabilities of the model. PepGLAD enhances peptide sequence—
structure co-design diversity by 18%, in silico success rates by 8%,
and recovery of reference binding conformations by 26%.

Beyond diffusion models, flow-matching frameworks have
emerged as powerful tools in peptide design. PepFlow, developed
by Li et al.,"®® is a multimodal generative model based on the
flow-matching framework. It captures residue backbone orienta-
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tions and side-chain dynamics crucial to Ppls by representing
rigid backbones in SE(3) space and encoding side-chain angles
on high-dimensional tori. The peptide sequence is represented
as categorical distributions over the probability simplex. By
learning joint distributions across these modalities via flows
and vector fields on their corresponding manifolds, PepFlow
excels in tasks such as fix-backbone sequence design and side-
chain packing. For sequence-structure co-design, PepFlow excels
in metrics including geometry (e.g., AAR, RMSD), energy (e.g.,
stability, affinity), and diversity. However, it lags behind RFdiffu-
sion in terms of designability. Despite this limitation, extensive
benchmarking underscores the robust performance of PepFlow
and significant potential to advance computational peptide
design methodologies.

Sequence-based methods

The success of structure-based peptide binder design, as discussed
above, typically relies on high-resolution co-crystal structures for
accurate modeling. However, high-quality structural data remain
scarce, and structure-based methods are inherently limited by
the static nature of such data, diminishing their effectiveness
for proteins that undergo dynamic structural transitions. Nota-
bly, this approach faces significant challenges when applied to
disordered or unstable proteins, such as certain transcription fac-
tors, because of their crystallization difficulties and tendency to
adopt multiple conformations. %%

To address these challenges, pLMs have introduced a
sequence-based paradigm for target-specific peptide binder
design. These large-scale models are trained on vast protein
sequence data sets, capturing not only key physicochemical
properties, but also higher-order structural features. Among
these, ESM2 stands out for its robustness, leveraging masked lan-
guage modeling (MLM) tasks to predict protein functions, design
antibodies, and even predict protein structures.”*” Building on
the advances in pLMs, de novo peptide design methods have
emerged, proving particularly valuable for proteins lacking reli-
able structural data or those previously considered ‘undruggable’.

PepMLM®® is a representative pLM-based method specifi-
cally designed for generating peptides targeting protein
sequences. It functions by placing a contiguous mask at the C
terminus of a target protein sequence, representing the peptide
yet to be generated, and then uses ESM2 to reconstruct the
masked region, producing high-affinity peptide binders. Empiri-
cal results demonstrate that PepMLM achieves a hit rate exceed-
ing 38%, significantly outperforming RFdiffusion. In addition,
when integrated into a ubiquitin-binding antibody (ubiAb) sys-
tem, it shows promising potential in degrading intrinsically dis-
ordered proteins, such as TRIMS.

For applications requiring even higher specificity, especially
when targeting discrete motifs, moPPIt offers a motif-specific
PPI-targeting algorithm.®*® Central to this approach is BindEval-
uator, a transformer-based model that interpolates between two
pLM embeddings using multi-headed self-attention, prioritizing
local motif features. Trained on over 510 000 annotated PPI data
points, BindEvaluator achieves an impressive test AUC of >0.94,
which increases above 0.96 when fine-tuned on protein—peptide
pairs. By combining BindEvaluator with PepMLM and a genetic

optimization step, moPPIt generates peptides that selectively
bind key residues on a target protein. Notably, moPPIt extends
beyond known targets, successfully accommodating previously
unexplored structured or disordered proteins, offering a robust
solution for dynamic or structurally elusive targets.

Another sequence-based framework for designing target-
specific peptides, Cut&CLIP, was introduced by Palepu et al.*®”
This method integrates pretrained protein embeddings with con-
trastive learning to design peptides that not only bind to target
proteins, but also induce degradation via an E3 ubiquitin ligase
domain. By jointly encoding both proteins and candidate pep-
tides, the model captures essential similarities between known
protein—peptide pairs. Experimental validation demonstrated
that fusing the generated peptides with ubiAb constructs consis-
tently led to the degradation of pathogenic proteins in human
cells, highlighting the effectiveness of this framework for
peptide-mediated protein degradation.

Collectively, pLMs are proving to be highly promising com-
plementary tools to structure-based peptide design. This success
marks a significant milestone in sequence-level peptide design,
significantly expanding the potential for programmable pro-
teome editing and novel strategies against traditionally ‘undrug-
gable’ targets. When combined with insights into protein
degradation mechanisms such as ubiAb, these models open
exciting new avenues for precise protein control and the devel-
opment of next-generation therapeutics. As pLMs continue to
evolve, we can anticipate further breakthroughs in de novo pep-
tide design, programmable protein editing, and targeted drug
development.

Evaluation metrics

In peptide design, two primary evaluation metrics are commonly
used: self-consistency and diversity. Self-consistency assesses the
alignment of generated sequences with their corresponding
backbone structures, with methods such as ProteinMPNN serv-
ing as the standard.”®* Diversity measures the ability of the
model to generalize beyond the training data by calculating
backbone RMSD or TM-scores *®*® through alignment with struc-
tural data from sources such as the PDB or AF. However, the
absence of standardized benchmarks complicates comparisons
across different peptide design studies and models for antibodies
or protein binders. Although experimental validation serves as a
gold standard for some self-consistency assessments, most novel
co-design models still heavily rely on MD simulations.

Binding energy is key metric for assessing the stability of tar-
get-peptide interactions and selecting top peptides for further
analysis. Rosetta binding energy*®” is commonly used to rank
the generated peptides. Confidence scores from AF also serve as
proxies for binding affinity, assisting peptide ranking.”>” The
interface predicted template modeling (ipTM) score is effective
for evaluating PPIs and is similarly applied to rank peptides
and assess protein-peptide structure predictions.*’” However,
the ipTM score has limitations, particularly its reliance on full-
length binding partners, which can introduce errors, especially
in sequences with unstructured or flexible regions. These issues
are more pronounced in Ppls, where binding interfaces are typi-
cally short and flexible. To address these challenges, the actual
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interface pTM (actifpTM)*°" score was introduced, focusing on
confident interface residues for a more accurate measure of inter-
action confidence, minimizing the influence of unstructured or
flexible regions.

Looking forward, future research should prioritize establish-
ing comprehensive data sets and benchmarks specifically tailored
to peptide design. An integrated peptide design platform would
encompass extensive data-driven model training, thorough eval-
uations, and experimental validations. Such a platform would lay
the groundwork for the development of more effective peptide-
based therapeutics.

Challenges and future perspectives

Early drug development was dominated by the Lipinski’s rule-of-
five, favoring small molecules with molecular weights <500 Da,
clogP <5, fewer than ten H-bond acceptors, and fewer than five
H-bond donors to ensure favorable oral bioavailability.”?* This
guideline initially cast doubt on the feasibility of larger mole-
cules, such as proteins and peptides, as therapeutic agents.???
Despite natural peptides having crucial roles in regulating mem-
brane receptors and secretory proteins, their therapeutic poten-
tial is limited by poor thermal stability, rapid protease
degradation, low binding affinity, and short half-lives, ultimately
leading to low oral bioavailability.

To overcome these limitations, expanding the peptide chem-
ical space through innovative strategies has become essential. For
example, the introduction of NCAAs, N-methylation, and
advanced cyclization techniques offers new avenues to enhance
peptide stability and efficacy. Among these strategies, cyclic pep-
tides stand out in medicinal chemistry, ?°* attracting significant
attention for their ability to constrain conformational flexibility,
thereby reducing degradation, instability, and poor membrane
permeability, which are key limitations of peptide-based
therapeutics. %>

Despite advancements in Al-driven models, existing structure-
based models for cyclic peptide design predominantly focus on
conventional cyclization strategies, such as N-to-C terminal
cyclization or disulfide bond formation. Unconventional meth-
ods, such as thioether cyclization, remain underexplored. The
recent development of RFpeptides,?”® based on RFdiffusion,
enables the design of macrocyclic peptide binders for diverse pro-
tein targets. By incorporating cyclic relative position encodings
and leveraging ProteinMPNN for sequence design, RFpeptides
can create high-affinity binders with exceptional accuracy. This
approach greatly enhances design efficiency, offering a powerful
tool for therapeutic and diagnostic applications.

Furthermore, the integration of NCAAs into DL-based models
has yet to be fully realized, limiting the chemical diversity avail-
able for peptide design. Future work could integrate these strate-
gies into design frameworks by leveraging approaches such as the
use of CCD by AF3 for modification data inputs. This would
enhance the versatility and applicability of diffusion-based mod-
els, enabling more diverse and effective cyclic peptide designs.
Although sequence-based peptide drug development offers
broader applications across various therapeutic contexts,
PepINVENT"*” exemplifies this progress by using SMILES nota-
tion to represent peptide molecules. This approach captures non-

standard components, including NCAAs and unconventional
cyclic structures. Designed with the needs of pharmaceutical
researchers in mind, it bridges computational methods with
real-world drug discovery.

Concluding remarks

In summary, the future of peptide design depends on our ability to
understand and translate peptide structure—function relationships
into computational frameworks. Although AI has already demon-
strated significant potential in peptide drug design, no Al-assisted
peptide drugs have yet been approved by the US Food and Drug
Administration (FDA). Most FDA-approved peptide drugs still rely
on traditional drug discovery methods. However, with the progres-
sion of Al-driven techniques, this field is moving beyond tradi-
tional physics-based strategies toward data-driven approaches,
unlocking new opportunities for innovative drug discovery.

For target specific peptide binder design, although binding
affinity is the key parameter in the initial phase in therapeutic
development, high-affinity peptides must also satisty pharma-
cokinetics. Future models should take a multi-objective
approach, balancing efficacy, stability, and drug-like properties,
to bridge computational predictions with real-world applications
and push forward peptide-based drug discovery.

An equally important consideration is peptide binder speci-
ficity. High-affinity binders are of limited practical use if they
do not achieve high on-target specificity. Although structure-
based models often focus on optimizing binding energy, they
might overlook the step of validating whether the binder can
selectively target its intended protein. Future structure-based
approaches should not prioritize structural accuracy alone; they
must also consider multiple objectives, such as specificity, to
minimize off-target effects.

Peptide-based drug design is progressing, especially for well-
characterized receptors. New users should start with versatile
models, such as AF3, whereas advanced users might explore
diffusion-based or flow-matching DL models for specialized
tasks. However, challenges persist, particularly in peptide flexibil-
ity, nonstandard modifications, and computational efficiency.
Furthermore, combining molecular simulations with Al offers a
synergistic approach to enhance peptide design strategies. Incor-
porating experimental validation is essential to ensure the accu-
racy, reliability, and real-world applicability of computational
methods. This integrated approach will advance the develop-
ment of peptide-based therapeutics with both high specificity
and efficacy.
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